Author:
Boe Brian D.,Kujawa Jonathan R.,Nakano Daniel K.
Abstract
AbstractLet ${\Xmathfrak g}={\Xmathfrak g}_{\zerox }\oplus {\Xmathfrak g}_{\onex }$ be a classical Lie superalgebra and let ℱ be the category of finite-dimensional ${\Xmathfrak g}$-supermodules which are completely reducible over the reductive Lie algebra ${\Xmathfrak g}_{\zerox }$. In [B. D. Boe, J. R. Kujawa and D. K. Nakano, Complexity and module varieties for classical Lie superalgebras, Int. Math. Res. Not. IMRN (2011), 696–724], we demonstrated that for any module M in ℱ the rate of growth of the minimal projective resolution (i.e. the complexity of M) is bounded by the dimension of ${\Xmathfrak g}_{\onex }$. In this paper we compute the complexity of the simple modules and the Kac modules for the Lie superalgebra $\Xmathfrak {gl}(m|n)$. In both cases we show that the complexity is related to the atypicality of the block containing the module.
Subject
Algebra and Number Theory
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献