Abstract
In 1977, Gauduchon proved that on every compact hermitian manifold $(X, \omega )$ there exists a conformally equivalent hermitian metric $\omega _\mathrm {G}$ which satisfies $\mathrm {dd}^{\mathrm {c}} \omega _\mathrm {G}^{n-1} = 0$. In this note, we extend this result to irreducible compact singular hermitian varieties which admit a smoothing.
Subject
Algebra and Number Theory
Reference39 articles.
1. CPY21 Collins, T. C. , Picard, S. and Yau, S.-T. , Stability of the tangent bundle through conifold transitions, Preprint (2021), arXiv:2102.11170.
2. Degeneration of algebraic manifolds and the spectrum of Laplacian
3. Geometric transitions
4. On generalized Gauduchon metrics
5. Mesures de Monge–Ampère et caractérisation géométrique des variétés algébriques affines;Demailly;Mém. Soc. Math. Fr. (N.S.),1985
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Families of Singular Chern–Ricci Flat Metrics;The Journal of Geometric Analysis;2022-12-19