The essential skeleton of a product of degenerations

Author:

Brown Morgan V.,Mazzon Enrica

Abstract

We study the problem of how the dual complex of the special fiber of a strict normal crossings degeneration$\mathscr{X}_{R}$changes under products. We view the dual complex as a skeleton inside the Berkovich space associated to$X_{K}$. Using the Kato fan, we define a skeleton$\text{Sk}(\mathscr{X}_{R})$when the model$\mathscr{X}_{R}$is log-regular. We show that if$\mathscr{X}_{R}$and$\mathscr{Y}_{R}$are log-smooth, and at least one is semistable, then$\text{Sk}(\mathscr{X}_{R}\times _{R}\mathscr{Y}_{R})\simeq \text{Sk}(\mathscr{X}_{R})\times \text{Sk}(\mathscr{Y}_{R})$. The essential skeleton$\text{Sk}(X_{K})$, defined by Mustaţă and Nicaise, is a birational invariant of$X_{K}$and is independent of the choice of$R$-model. We extend their definition to pairs, and show that if both$X_{K}$and$Y_{K}$admit semistable models,$\text{Sk}(X_{K}\times _{K}Y_{K})\simeq \text{Sk}(X_{K})\times \text{Sk}(Y_{K})$. As an application, we compute the homeomorphism type of the dual complex of some degenerations of hyper-Kähler varieties. We consider both the case of the Hilbert scheme of a semistable degeneration of K3 surfaces, and the generalized Kummer construction applied to a semistable degeneration of abelian surfaces. In both cases we find that the dual complex of the$2n$-dimensional degeneration is homeomorphic to a point,$n$-simplex, or$\mathbb{C}\mathbb{P}^{n}$, depending on the type of the degeneration.

Publisher

Wiley

Subject

Algebra and Number Theory

Reference52 articles.

1. [Bul15] E. Bultot , Motivic integration and logarithmic geometry, Preprint (2015), arXiv:1505.05688 [math.AG].

2. Metrization of Differential Pluriforms on Berkovich Analytic Spaces

3. [GHH16] M. G. Gulbrandsen , L. H. Halle and K. Hulek , A GIT construction of degenerations of Hilbert schemes of points, Doc. Math., to appear. Preprint (2016), arXiv:1604.00215 [math.AG].

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Essential skeletons of pairs and Temkin’s metric;ANNALI DELL'UNIVERSITA' DI FERRARA;2024-04-01

2. The Frobenius structure theorem for affine log Calabi-Yau varieties containing a torus;Annals of Mathematics;2023-09-01

3. Special Lagrangian Fibrations, Berkovich Retraction, and Crystallographic Groups;International Mathematics Research Notices;2023-03-23

4. Principal bundles on metric graphs: The GL case;Advances in Mathematics;2022-12

5. Symmetric powers of algebraic and tropical curves: A non-Archimedean perspective;Transactions of the American Mathematical Society, Series B;2022-06-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3