Mather's regions of instability for annulus diffeomorphisms

Author:

Addas‐Zanata Salvador1,Tal Fábio Armando1ORCID

Affiliation:

1. Instituto de Matemática e Estatística Universidade de São Paulo São Paulo Brazil

Abstract

AbstractLet be a diffeomorphism of the closed annulus that preserves orientation and the boundary components, and be a lift of to its universal covering space. Assume that is a Birkhoff region of instability for , and the rotation set of is a nondegenerate interval. Then there exists an open ‐invariant essential annulus whose frontier intersects both boundary components of , and points and in , such that the positive (resp., negative) orbit of converges to a set contained in the upper (resp., lower) boundary component of and the positive (resp., negative) orbit of converges to a set contained in the lower (resp., upper) boundary component of . This extends a celebrated result originally proved by Mather in the context of area‐preserving twist diffeomorphisms.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Wiley

Subject

General Mathematics

Reference18 articles.

1. Homotopically unbounded disks for generic surface diffeomorphisms;Addas‐Zanata S.;Trans. Amer. Math. Soc.,2022

2. Area-preserving diffeomorphisms of the torus whose rotation sets have non-empty interior

3. A condition that implies full homotopical complexity of orbits for surface homeomorphisms

4. Pseudo-rotations with sufficiently Liouvillean rotation number are $$C^0$$ C 0 -rigid

5. Nouvelles Recherches sur les systèmes dynamiques;Birkhoff G. D.;Collected Math. Papers,1935

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3