On the geometry of rod packings in the 3‐torus

Author:

Hui Connie On Yu1,Purcell Jessica S.1ORCID

Affiliation:

1. School of Mathematics Monash University Clayton Australia

Abstract

AbstractRod packings in the 3‐torus encode information of some crystal structures in crystallography. They can be viewed as links in the 3‐torus, and tools from 3‐manifold geometry and topology can be used to study their complements. In this paper, we initiate the use of geometrisation to study such packings. We analyse the geometric structures of the complements of simple rod packings, and find families that are hyperbolic and Seifert fibred.

Publisher

Wiley

Reference18 articles.

1. Generalized bipyramids and hyperbolic volumes of alternating k-uniform tiling links

2. Classification of genus 1 virtual knots having at most five classical crossings;Akimova A. A.;J. Knot Theory Ramifications,2014

3. S.Al‐Jeloo Hyperbolic geometry of links in the 3‐torus Honours thesis School of Mathematics Monash University Australia 2019.

4. Geometry of biperiodic alternating links

5. M.Culler N. M.Dunfield M.Goerner andJ. R.Weeks SnapPy a computer program for studying the geometry and topology of 3‐manifolds 2022.http://snappy.computop.org

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3