Non‐autonomous double phase eigenvalue problems with indefinite weight and lack of compactness

Author:

Gou Tianxiang1,Rădulescu Vicenţiu D.23456ORCID

Affiliation:

1. School of Mathematics and Statistics Xi'an Jiaotong University Xi'an Shaanxi China

2. Faculty of Applied Mathematics AGH University of Science and Technology Krakow Poland

3. Faculty of Electrical Engineering and Communication Brno University of Technology Brno Czech Republic

4. Department of Mathematics University of Craiova Craiova Romania

5. Simion Stoilow Institute of Mathematics of the Romanian Academy Bucharest Romania

6. School of Mathematics Zhejiang Normal University Jinhua China

Abstract

AbstractIn this paper, we consider eigenvalues to the following double phase problem with unbalanced growth and indefinite weight, where , , , , and is an indefinite sign weight which may admit non‐trivial positive and negative parts. Here, is the ‐Laplacian operator and is the weighted ‐Laplace operator defined by . The problem can be degenerate, in the sense that the infimum of in may be zero. Our main results distinguish between the cases and . In the first case, we establish the existence of a continuous family of eigenvalues, starting from the principal frequency of a suitable single phase eigenvalue problem. In the latter case, we prove the existence of a discrete family of positive eigenvalues, which diverges to infinity.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

General Mathematics

Reference27 articles.

1. Eigenvalues of the indefinite‐weight p‐Laplacian in weighted spaces;Allegretto W.;Funkcial. Ekvac,1995

2. Nonlinear Analysis and Semilinear Elliptic Problems

3. Regularity for general functionals with double phase

4. A class of eigenvalue problems for the (p, q)‐Laplacian in RN$\mathbb {R}^N$;Benouhiba N.;Int. J. Pure Appl. Math.,2012

5. On the solutions of the -Laplacian problem at resonance

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A multiphase eigenvalue problem on a stratified Lie group;Rendiconti del Circolo Matematico di Palermo Series 2;2024-05-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3