ON POLYNOMIAL SEQUENCES WITH RESTRICTED GROWTH NEAR INFINITY

Author:

MÜLLER J.,YAVRIAN A.

Abstract

Let (Pn) be a sequence of polynomials which converges with a geometric rate on some arc in the complex plane to an analytic function. It is shown that if the sequence has restricted growth on a closed plane set E which is non-thin at ∞, then the limit function has a maximal domain of existence, and (Pn) converges with a locally geometric rate on this domain. If (snk) is a sequence of partial sums of a power series, a similar growth restriction on E forces the power series to have Ostrowski gaps. Moreover, the requirement of non-thinness of E at ∞ is necessary for these conclusions.

Publisher

Wiley

Subject

General Mathematics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Overconvergence Properties of Dirichlet Series;Potential Analysis;2020-05-06

2. Overconvergence of polynomial expansions of harmonic functions;Complex Variables and Elliptic Equations;2019-06-24

3. Universal Laurent expansions of harmonic functions;Journal of Mathematical Analysis and Applications;2018-02

4. Disjoint hypercyclicity equals disjoint supercyclicity for families of Taylor-type operators;Open Mathematics;2018-01-01

5. Taylor Series, Universality and Potential Theory;Fields Institute Communications;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3