ON SETS THAT MEET EVERY HYPERPLANE IN n-SPACE IN AT MOST n POINTS

Author:

DIJKSTRA JAN J.,VAN MILL JAN

Abstract

A simple proof that no subset of the plane that meets every line in precisely two points is an Fσ-set in the plane is presented. It was claimed that this result can be generalized for sets that meet every line in either one point or two points. No proof of this assertion is known, however. The main results in this paper form a partial answer to the question of whether the claim is valid. In fact, it is shown that a set that meets every line in the plane in at least one but at most two points must be zero-dimensional, and that if it is σ-compact then it must be a nowhere dense Gδ-set in the plane. Generalizations for similar sets in higher-dimensional Euclidean spaces are also presented.

Publisher

Wiley

Subject

General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. There are no n-point Fσ sets in Rm;Bulletin of the Australian Mathematical Society;2005-12

2. Open problems in topology;Topology and its Applications;2004-01

3. On the structure ofn-point sets;Israel Journal of Mathematics;2003-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3