Affiliation:
1. Westlake University Hangzhou China
2. Dipartimento SBAI “Sapienza” Università di Roma Rome Italy
Abstract
AbstractLet be an integer coprime to 6 such that and let be the genus of the modular curve . We compute the intersection matrices relative to special fibres of the minimal regular model of . Moreover, we prove that the self‐intersection of the Arakelov canonical sheaf of is asymptotic to , for .
Funder
Ben-Gurion University of the Negev
Reference31 articles.
1. INTERSECTION THEORY OF DIVISORS ON AN ARITHMETIC SURFACE
2. Auto‐intersection du dualisant relatif des courbes modulaires X0(N)${X}_0({N})$;Abbes A.;J. Reine Angew. Math.,1997
3. Arakelov self-intersection numbers of minimal regular models of modular curves $$X_0(p^2)$$
4. D.Banerjee P.Majumder andC.Chaudhuri The intersection matrices ofX0(pr)${X}_0(p^r)$and some applications arXiv:2210.08866 2022.
5. C.CurillaandU.Kühn On the arithmetic self‐intersection numbers of the dualizing sheaf for fermat curves of prime exponent 2009.