On curvature bounds in Lorentzian length spaces

Author:

Beran Tobias1,Kunzinger Michael1ORCID,Rott Felix1

Affiliation:

1. Faculty of Mathematics University of Vienna Vienna Austria

Abstract

AbstractWe introduce several new notions of (sectional) curvature bounds for Lorentzian pre‐length spaces: On the one hand, we provide convexity/concavity conditions for the (modified) time separation function, and, on the other hand, we study four‐point conditions, which are suitable also for the non‐intrinsic setting. Via these concepts, we are able to establish (under mild assumptions) the equivalence of all previously known formulations of curvature bounds. In particular, we obtain the equivalence of causal and timelike curvature bounds as introduced by Kunzinger and Sämann.

Funder

Austrian Science Fund

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3