Global classical solutions to a multidimensional radiation hydrodynamics model with symmetry and large initial data

Author:

Wei Jing1,Zhang Minyi1,Zhu Changjiang1ORCID

Affiliation:

1. School of Mathematics South China University of Technology Guangzhou P.R. China

Abstract

AbstractAs a first stage to study the global large solutions of the radiation hydrodynamics model with viscosity and thermal conductivity in the high‐dimensional space, we study the problems in high dimensions with some symmetry, such as the spherically or cylindrically symmetric solutions. Specifically, we will study the global classical large solutions to the radiation hydrodynamics model with spherically or cylindrically symmetric initial data. The key point is to obtain the strict positive lower and upper bounds of the density and the lower bound of the temperature . Compared with the Navier–Stokes equations, these estimates in the present paper are more complicated due to the influence of the radiation. To overcome the difficulties caused by the radiation, we construct a pointwise estimate between the radiative heat flux and the temperature by studying the boundary value problem of the corresponding ordinary differential equation. And we consider a general heat conductivity: if ; if . This can be viewed as the first result about the global classical large solutions of the radiation hydrodynamics model with some symmetry in the high‐dimensional space.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3