Affiliation:
1. Tokyo Institute of Technology Meguro‐ku Tokyo Japan
Abstract
AbstractIn this paper, we present some new results on the geometrically ‐step solvable Grothendieck conjecture in anabelian geometry. Specifically, we show the (weak bianabelian and strong bianabelian) geometrically ‐step solvable Grothendieck conjecture(s) for affine hyperbolic curves over fields finitely generated over the prime field. First of all, we show the conjecture over finite fields. Next, we show the geometrically ‐step solvable version of the Oda–Tamagawa good reduction criterion for hyperbolic curves. Finally, by using these two results, we show the conjecture over fields finitely generated over the prime field.
Funder
Japan Society for the Promotion of Science