Affiliation:
1. Institut de recherche mathématique avancée (IRMA) and Institut d'études avancées de l'université de Strasbourg (USIAS), Université de Strasbourg Strasbourg France
2. Institute for Mathematics, Astrophysics and Particle Physics (IMAPP) Radboud University Nijmegen The Netherlands
3. Korteweg‐de Vries Institute for Mathematics (KdVI) University of Amsterdam Amsterdam The Netherlands
Abstract
AbstractWe study the rational Chow motives of certain moduli spaces of vector bundles on a smooth projective curve with additional structure (such as a parabolic structure or Higgs field). In the parabolic case, these moduli spaces depend on a choice of stability condition given by weights; our approach is to use explicit descriptions of variation of this stability condition in terms of simple birational transformations (standard flips/flops and Mukai flops) for which we understand the variation of the Chow motives. For moduli spaces of parabolic vector bundles, we describe the change in motive under wall‐crossings, and for moduli spaces of parabolic Higgs bundles, we show the motive does not change under wall‐crossings. Furthermore, we prove a motivic analogue of a classical theorem of Harder and Narasimhan relating the rational cohomology of moduli spaces of vector bundles with and without fixed determinant. For rank 2 vector bundles of odd degree, we obtain formulae for the rational Chow motives of moduli spaces of semistable vector bundles, moduli spaces of Higgs bundles and moduli spaces of parabolic (Higgs) bundles that are semistable with respect to a generic weight (all with and without fixed determinant).
Funder
Radboud Universiteit
Agence Nationale de la Recherche
Université de Strasbourg
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
Reference73 articles.
1. Revêtements étales et groupe fondamental (SGA 1) Documents Mathématiques (Paris) [Mathematical Documents (Paris)] 3 Société Mathématique de France Paris 2003(French). Séminaire de géométrie algébrique du Bois Marie 1960–61. [Algebraic Geometry Seminar of Bois Marie 1960–61]; Directed by A. Grothendieck; With two papers by M. Raynaud; Updated and annotated reprint of the 1971 original [Lecture Notes in Math. 224 Springer Berlin.].
2. Y.André Motifs de dimension finie (d'après S.‐I. Kimura P. O'Sullivan ⋯$\dots$) Séminaire Bourbaki 2003–2004 Exp. No. 929. In Astérisque 299 2005 pp. viii 115–145.
3. Vector Bundles Over an Elliptic Curve
4. The Yang-Mills equations over Riemann surfaces
5. Note sur les opérations de Grothendieck et la réalisation de Betti
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献