Integrable equations associated with the finite‐temperature deformation of the discrete Bessel point process

Author:

Cafasso Mattia1,Ruzza Giulio2

Affiliation:

1. Univ Angers CNRS LAREMA SFR MATHSTIC Angers France

2. IRMP UCLouvain Louvain‐la‐Neuve Belgium

Abstract

AbstractWe study the finite‐temperature deformation of the discrete Bessel point process. We show that its largest particle distribution satisfies a reduction of the 2D Toda equation, as well as a discrete version of the integro‐differential Painlevé II equation of Amir–Corwin–Quastel, and we compute initial conditions for the Poissonization parameter equal to 0. As proved by Betea and Bouttier, in a suitable continuum limit the last particle distribution converges to that of the finite‐temperature Airy point process. We show that the reduction of the 2D Toda equation reduces to the Korteweg–de Vries equation, as well as the discrete integro‐differential Painlevé II equation reduces to its continuous version. Our approach is based on the discrete analogue of Its–Izergin–Korepin–Slavnov theory of integrable operators developed by Borodin and Deift.

Funder

Horizon 2020 Framework Programme

Centre National de la Recherche Scientifique

Fonds De La Recherche Scientifique - FNRS

Publisher

Wiley

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3