How does the chromatic number of a random graph vary?

Author:

Heckel Annika1ORCID,Riordan Oliver2

Affiliation:

1. Matematiska institutionen Uppsala universitet Uppsala Sweden

2. Mathematical Institute University of Oxford, Radcliffe Observatory Quarter Oxford UK

Abstract

AbstractThe chromatic number of a graph is a fundamental parameter, whose study was originally motivated by applications ( is the minimum number of internally compatible groups the vertices can be divided into, if the edges represent incompatibility). As with other graph parameters, it is also studied from a purely theoretical point of view, and here a key question is: what is its typical value? More precisely, how does , the chromatic number of a graph chosen uniformly at random from all graphs on vertices, behave? This quantity is a random variable, so one can ask (i) for upper and lower bounds on its typical values, and (ii) for bounds on how much it varies: what is the width (for example, standard deviation) of its distribution? On (i) there has been considerable progress over the last 45 years; on (ii), which is our focus here, remarkably little. One would like both upper and lower bounds on the width of the distribution, and ideally a description of the (appropriately scaled) limiting distribution. There is a well‐known upper bound of Shamir and Spencer of order , improved slightly by Alon to , but no non‐trivial lower bound was known until 2019, when the first author proved that the width is at least for infinitely many , answering a longstanding question of Bollobás. In this paper we have two main aims: first, we shall prove a much stronger lower bound on the width. We shall show unconditionally that, for some values of , the width is at least , matching the upper bounds up to the error term. Moreover, conditional on a recently announced sharper explicit estimate for the chromatic number, we improve the lower bound to order , within a logarithmic factor of the upper bound. Second, we will describe a number of conjectures as to what the true behaviour of the variation in is, and why. The first form of this conjecture arises from recent work of Bollobás, Heckel, Morris, Panagiotou, Riordan and Smith. We will also give much more detailed conjectures, suggesting that the true width, for the worst case , matches our lower bound up to a constant factor. These conjectures also predict a Gaussian limiting distribution.

Funder

European Research Council

Publisher

Wiley

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3