Abstract
AbstractIn this paper we generalize the construction of a domain-theoretic integral, introduced by Professor Abbas Edalat, in locally compact separable Hausdorff spaces, to general Hausdorff spaces embedded in a domain. Our main example of such spaces comprises general metric spaces embedded in the rounded ideal completion of the partially ordered set of formal balls. We go on to discuss analytic subsets of a general Hausdorff space, and give a sufficient condition for a measure supported on an analytic set to be approximated by a sequence of simple valuations. In particular, this condition is always satisfied in a metric space embedded in the rounded ideal completion of its formal ball space. We finish with a comments section, where we highlight some potential areas for future research and discuss some questions of computability.
Subject
Computational Theory and Mathematics,General Mathematics
Reference27 articles.
1. Spaces of maximal points
2. When Scott is weak on the top
3. ‘Computable Banach spaces via domain theory’;Edalat;The-oret. Comput. Sci.,1999
4. Domain theory in stochastic processes
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献