Abstract
AbstractThe Weil descent construction of the GHS attack on the elliptic curve discrete logarithm problem (ECDLP) is generalised in this paper, to arbitrary Artin-Schreier extensions. A formula is given for the characteristic polynomial of Frobenius for the curves thus obtained, as well as a proof that the large cyclic factor of the input elliptic curve is not contained in the kernel of the composition of the conorm and norm maps. As an application, the number of elliptic curves that succumb to the basic GHS attack is considerably increased, thereby further weakening curves over GF2155.Other possible extensions or variations of the GHS attack are discussed, leading to the conclusion that they are unlikely to yield further improvements.
Subject
Computational Theory and Mathematics,General Mathematics
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献