On a Li-type criterion for zero-free regions of certain Dirichlet series with real coefficients

Author:

Bucur Alina,Ernvall-Hytönen Anne-Maria,Odžak Almasa,Smajlović Lejla

Abstract

The Li coefficients $\unicode[STIX]{x1D706}_{F}(n)$ of a zeta or $L$-function $F$ provide an equivalent criterion for the (generalized) Riemann hypothesis. In this paper we define these coefficients, and their generalizations, the $\unicode[STIX]{x1D70F}$-Li coefficients, for a subclass of the extended Selberg class which is known to contain functions violating the Riemann hypothesis such as the Davenport–Heilbronn zeta function. The behavior of the $\unicode[STIX]{x1D70F}$-Li coefficients varies depending on whether the function in question has any zeros in the half-plane $\text{Re}(z)>\unicode[STIX]{x1D70F}/2.$ We investigate analytically and numerically the behavior of these coefficients for such functions in both the $n$ and $\unicode[STIX]{x1D70F}$ aspects.

Publisher

Wiley

Subject

Computational Theory and Mathematics,General Mathematics

Reference19 articles.

1. On the zeros of Dirichlet -functions

2. Li coefficients for automorphic L-functions

3. On the 𝜏-Li coefficients for automorphic L-functions;Mazhouda;Rocky Mountain J. Math.,

4. On the cubic $L$-function

5. Around Davenport–Heilbronn function;Bombieri;Uspekhi Mat. Nauk,2011

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Variants of the Li-Type Criteria for the Generalized Riemann Hypothesis;Association for Women in Mathematics Series;2024

2. On the Discretized Li Coefficients for a Certain Class of $$L-$$Functions;Bulletin of the Malaysian Mathematical Sciences Society;2021-05-12

3. On the zeros of some functions from the extended Selberg class;Automorphic Forms and Related Topics;2019

4. On Asymptotic Behavior of Generalized Li Coefficients;Taiwanese Journal of Mathematics;2018-12-01

5. Evaluation of the Li coefficients on function fields and applications;European Journal of Mathematics;2018-01-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3