On the sheafyness property of spectra of Banach rings

Author:

Bambozzi Federico1,Kremnizer Kobi2

Affiliation:

1. Dipartimento di Matematica University of Padova Padova Italy

2. Mathematical Institute University of Oxford Oxford UK

Abstract

AbstractLet be a non‐Archimedean Banach ring, satisfying some mild technical hypothesis that we will specify later on. We prove that it is possible to associate to a homotopical Huber spectrum via the introduction of the notion of derived rational localization. The spectrum so obtained is endowed with a derived structural sheaf of simplicial Banach algebras for which the derived C̆ech–Tate complex is strictly exact. Under some hypothesis, we can prove that there is a canonical morphism of underlying topological spaces that is a homeomorphism in some well‐known examples of non‐sheafy Banach rings, where is the usual Huber spectrum of . This permits the use of the tools from derived geometry to understand the geometry of in cases when the classical structure sheaf is not a sheaf.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Reference26 articles.

1. F.Bambozzi On a generalization of affinoid varieties Ph.D. thesis University of Padova 2013.

2. Dagger geometry as Banach algebraic geometry

3. Stein domains in Banach algebraic geometry

4. Analytic geometry over F1 and the Fargues-Fontaine curve

5. F.BambozziandK.Kremnizer Relations between bornological and condensed structures—algebraic theory in progress.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3