Riemann–Hilbert–Birkhoff inverse problem for semisimple flat F$F$‐manifolds and convergence of oriented associativity potentials

Author:

Cotti Giordano12ORCID

Affiliation:

1. Grupo de Física Matemática Departamento de Matemática, Instituto Superior Técnico Av. Rovisco Pais, Lisboa Portugal

2. Departamento de Matemática Faculdade de Ciências da Universidade de Lisboa Lisboa Portugal

Abstract

AbstractIn this paper, we address the problem of classification of quasi‐homogeneous formal power series providing solutions of the oriented associativity equations. Such a classification is performed by introducing a system of monodromy local moduli on the space of formal germs of homogeneous semisimple flat ‐manifolds. This system of local moduli is well defined on the complement of the strictly doubly resonant locus, namely, a locus of formal germs of flat ‐manifolds manifesting both coalescences of canonical coordinates at the origin, and resonances of their conformal dimensions. It is shown how the solutions of the oriented associativity equations can be reconstructed from the knowledge of the monodromy local moduli via a Riemann–Hilbert–Birkhoff boundary value problem. Furthermore, standing on results of B. Malgrange and C. Sabbah, it is proved that any formal homogeneous semisimple flat ‐manifold, which is not strictly doubly resonant, is actually convergent. Our semisimplicity criterion for convergence is also reformulated in terms of solutions of Losev–Manin commutativity equations, growth estimates of correlators of ‐cohomological field theories, and solutions of open Witten–Dijkgraaf–Verlinde–Verlinde equations.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

Wiley

Reference87 articles.

1. On matrices depending on parameters;Arnol'd V. I.;Uspekhi Mat. Nauk,1971

2. From the Darboux–Egorov system to bi-flat F-manifolds

3. $F$-manifolds, multi-flat structures and Painlevé transcendents

4. Complex reflection groups, logarithmic connections and bi-flat F-manifolds

5. A.Arsie A.Buryak P.Lorenzoni andP.Rossi Semisimple flatF$F$‐manifolds in higher genus arXiv:2001.05599 1–48.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3