Gröbner bases, symmetric matrices, and type C Kazhdan–Lusztig varieties

Author:

Escobar Laura1,Fink Alex2ORCID,Rajchgot Jenna3,Woo Alexander4

Affiliation:

1. Department of Mathematics Washington University in St. Louis St. Louis Missouri USA

2. School of Mathematical Sciences Queen Mary University of London London UK

3. Department of Mathematics and Statistics McMaster University Hamilton ON Canada

4. Department of Mathematics and Statistical Science University of Idaho Moscow Idaho USA

Abstract

AbstractWe study a class of combinatorially defined polynomial ideals that are generated by minors of a generic symmetric matrix. Included within this class are the symmetric determinantal ideals, the symmetric ladder determinantal ideals, and the symmetric Schubert determinantal ideals of A. Fink, J. Rajchgot, and S. Sullivant. Each ideal in our class is a type C analog of a Kazhdan–Lusztig ideal of A. Woo and A. Yong; that is, it is the scheme‐theoretic defining ideal of the intersection of a type C Schubert variety with a type C opposite Schubert cell, appropriately coordinatized. The Kazhdan–Lusztig ideals that arise are exactly those where the opposite cell is 123‐avoiding. Our main results include Gröbner bases for these ideals, prime decompositions of their initial ideals (which are Stanley–Reisner ideals of subword complexes), and combinatorial formulas for their multigraded Hilbert series in terms of pipe dreams.

Funder

National Science Foundation

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Reference43 articles.

1. Representations of quantum groups at a p$p$th root of unity and of semisimple groups in characteristic p$p$: independence of p$p$;Andersen H. H.;Astérisque,1994

2. Diagrams and essential sets for signed permutations;Anderson D.;Electron. J. Combin.,2018

3. D.Anderson T.Ikeda M.Jeon andR.Kawago The multiplicity of a singularity in a vexillary Schubert variety Preprint arXiv:2112.07375 2021.

4. RC-Graphs and Schubert Polynomials

5. Schubert polynomials for the classical groups

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3