Free resolutions for free unitary quantum groups and universal cosovereign Hopf algebras

Author:

Baraquin Isabelle1ORCID,Franz Uwe1ORCID,Gerhold Malte2ORCID,Kula Anna3ORCID,Tobolski Mariusz3ORCID

Affiliation:

1. Université de Franche‐Comté Besançon France

2. Saarland University, Fachbereich Mathematik Saarbrücken Germany

3. Instytut Matematyczny Uniwersytet Wrocławski Wrocław Poland

Abstract

AbstractWe find a finite free resolution of the counit of the free unitary quantum groups of van Daele and Wang and, more generally, Bichon's universal cosovereign Hopf algebras with a generic parameter matrix. This allows us to compute Hochschild cohomology with one‐dimensional coefficients for all these Hopf algebras. In fact, the resolutions can be endowed with a Yetter–Drinfeld structure. General results of Bichon then allow us to compute also the corresponding bialgebra cohomologies. Finding the resolution rests on two pillars. We take as a starting point the resolution for the free orthogonal quantum group presented by Collins, Härtel, and Thom or its algebraic generalization to quantum symmetry groups of bilinear forms due to Bichon. Then, we make use of the fact that the free unitary quantum groups and some of its non‐Kac versions can be realized as a glued free product of a (non‐Kac) free orthogonal quantum group with , the finite group of order 2. To obtain the resolution also for more general universal cosovereign Hopf algebras, we extend Gromada's proof from compact quantum groups to the framework of matrix Hopf algebras. As a by‐product of this approach, we also obtain a projective resolution for the freely modified bistochastic quantum groups. Only a special subclass of free unitary quantum groups and universal cosovereign Hopf algebras decompose as a glued free product in the described way. In order to verify that the sequence we found is a free resolution in general (as long as the parameter matrix is generic, two conditions which are automatically fulfilled in the free unitary quantum group case), we use the theory of Hopf bi‐Galois objects and Bichon's results on monoidal equivalences between the categories of Yetter–Drinfeld modules over universal cosovereign Hopf algebras for different parameter matrices.

Funder

Agence Nationale de la Recherche

Deutsche Forschungsgemeinschaft

European Research Consortium for Informatics and Mathematics

Publisher

Wiley

Reference40 articles.

1. Categorical Constructions for Hopf Algebras

2. Théorie des représentations du groupe quantique compact libre O(n)${\rm O}(n)$;Banica T.;C. R. Acad. Sci. Paris Sér. I Math.,1996

3. Le Groupe Quantique Compact Libre U(n)

4. Le Groupe Quantique Compact Libre U(n)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3