Volume of Seifert representations for graph manifolds and their finite covers

Author:

Derbez Pierre1,Liu Yi2,Wang Shicheng3

Affiliation:

1. LATP UMR 7353 Marseille France

2. Beijing International Center for Mathematical Research Peking University Beijing China

3. School of Mathematical Sciences Peking University Beijing China

Abstract

AbstractFor any closed orientable 3‐manifold, there is a volume function defined on the space of all Seifert representations of the fundamental group. The maximum absolute value of this function agrees with the Seifert volume of the manifold due to Brooks and Goldman. For any Seifert representation of a graph manifold, the authors establish an effective formula for computing its volume, and obtain restrictions to the representation as analogous to the Milnor–Wood inequality (about transversely projective foliations on Seifert fiber spaces). It is shown that the Seifert volume of any graph manifold is a rational multiple of . Among all finite covers of a given nongeometric graph manifold, the supremum ratio of the Seifert volume over the covering degree can be a positive number, and can be infinite. Examples of both possibilities are discovered, and confirmed with the explicit values determined for the finite ones.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Wiley

Reference24 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3