Free curves, eigenschemes, and pencils of curves

Author:

Di Gennaro Roberta1,Ilardi Giovanna1,Miró‐Roig Rosa Maria2,Schenck Henry3,Vallès Jean4

Affiliation:

1. Dipartimento di Matematica e Applicazioni “Renato Caccioppoli” Università degli Studi di Napoli Federico II Napoli Italy

2. Department de Mathemàtiques i Informàtica Universitat de Barcelona Barcelona Spain

3. Mathematics Department Auburn University Auburn Alabama USA

4. Department of Mathematics Université de Pau et des Pays de l'Adour PAU Cedex France

Abstract

AbstractLet . A reduced plane curve is free if its associated module of tangent derivations is a free ‐module, or equivalently if the corresponding sheaf of vector fields tangent to splits as a direct sum of line bundles on . In general, free curves are difficult to find, and in this paper, we describe a new method for constructing free curves in . The key tools in our approach are eigenschemes and pencils of curves, combined with an interpretation of Saito's criterion in this context. Previous constructions typically applied only to curves with quasihomogeneous singularities, which is not necessary in our approach. We illustrate our method by constructing large families of free curves.

Funder

National Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3