Affiliation:
1. Mathematisches Institut Albert‐Ludwigs‐Universität Freiburg Freiburg Germany
Abstract
AbstractIn this short note, we investigate the existence of orbifold Kähler–Einstein metrics on toric varieties. In particular, we show that every ‐factorial normal projective toric variety allows an orbifold Kähler–Einstein metric. Moreover, we characterize ‐stability of ‐factorial toric pairs of Picard number one in terms of the log Cox ring and the universal orbifold cover.
Funder
Deutsche Forschungsgemeinschaft
Reference16 articles.
1. Cambridge Studies in Advanced Mathematics;Arzhantsev I.,2015
2. Real Monge-Ampère equations and Kähler-Ricci solitons on toric log Fano varieties
3. Openness of uniform K-stability in families of $Q$-Fano varieties
4. L.BraunandJ.Moraga Iteration of Cox rings of klt singularities arXiv:2103.13524 2021.https://doi.org/10.48550/arxiv.2103.13524.