Affiliation:
1. Departamento de Matemática Universidade Federal de Minas Gerais Belo Horizonte MG Brazil
2. Instituto de Matemática Universidade Federal de Alagoas Maceió AL Brazil
3. Departamento de Matemática e Estatística Universidade Federal de São João del Rei São João del Rei MG Brazil
Abstract
AbstractIn this paper, we prove gap results for constant mean curvature (CMC) surfaces. First, we find a natural inequality for CMC surfaces that imply convexity for distance function. We then show that if is a complete, properly embedded CMC surface in the Euclidean space satisfying this inequality, then is either a sphere or a right circular cylinder. Next, we show that if is a free boundary CMC surface in the Euclidean 3‐ball satisfying the same inequality, then either is a totally umbilical disk or an annulus of revolution. These results complete the picture about gap theorems for CMC surfaces in the Euclidean 3‐space. We also prove similar results in the hyperbolic space and in the upper hemisphere, and in higher dimensions.
Funder
Fundação de Amparo à Pesquisa do Estado de Minas Gerais
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Princeton University
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献