On sufficient conditions for spanning structures in dense graphs

Author:

Lang Richard1,Sanhueza‐Matamala Nicolás2

Affiliation:

1. Fachbereich Mathematik Universität Hamburg Hamburg Germany

2. Facultad de Ciencias Físicas y Matemáticas, Departamento de Ingeniería Matemática Universidad de Concepción Concepción Chile

Abstract

AbstractWe study structural conditions in dense graphs that guarantee the existence of vertex‐spanning substructures such as Hamilton cycles. It is easy to see that every Hamiltonian graph is connected, has a perfect fractional matching and, excluding the bipartite case, contains an odd cycle. A simple consequence of the Robust Expander Theorem of Kühn, Osthus and Treglown tells us that any large enough graph that robustly satisfies these properties must already be Hamiltonian. Our main result generalises this phenomenon to powers of cycles and graphs of sublinear bandwidth subject to natural generalisations of connectivity, matchings and odd cycles. This answers a question of Ebsen, Maesaka, Reiher, Schacht and Schülke and solves the embedding problem that underlies multiple lines of research on sufficient conditions for spanning structures in dense graphs. As applications, we recover and establish Bandwidth Theorems in a variety of settings including Ore‐type degree conditions, Pósa‐type degree conditions, deficiency‐type conditions, locally dense and inseparable graphs, multipartite graphs as well as robust expanders.

Funder

Grantová Agentura České Republiky

Fondo Nacional de Desarrollo Científico y Tecnológico

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

General Mathematics

Reference74 articles.

1. The bandwidth theorem in sparse graphs;Allen P.;Adv. Comb.,2020

2. P.Allen J.Böttcher H.Hàn Y.Kohayakawa andY.Person Blow‐up lemmas for sparse graphs arXiv:1612.00622 2016.

3. J.Balogh A. V.Kostochka andA.Treglown On perfect packings in dense graphs arXiv:1110.3490 2011.

4. On Perfect Packings in Dense Graphs

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tiling Dense Hypergraphs;Proceedings of the 12th European Conference on Combinatorics, Graph Theory and Applications;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3