Unified invariant of knots from homological braid action on Verma modules

Author:

Martel Jules1,Willetts Sonny2

Affiliation:

1. Mathematics Department Cergy Paris University Pontoise France

2. Institut de mathématiques de Toulouse Université de Toulouse Toulouse France

Abstract

AbstractWe re‐build the quantum unified invariant of knots from braid groups' action on tensors of Verma modules. It is a two variables series having the particularity of interpolating both families of colored Jones polynomials and ADO polynomials, that is, semisimple and non‐semisimple invariants of knots constructed from quantum . We prove this last fact in our context that re‐proves (a generalization of) the famous Melvin–Morton–Rozansky conjecture first proved by Bar‐Natan and Garoufalidis. We find a symmetry of nicely generalizing the well‐known one of the Alexander polynomial, ADO polynomials also inherit this symmetry. It implies that quantum non‐semisimple invariants are not detecting knots' orientation. Using the homological definition of Verma modules we express as a generating sum of intersection pairing between fixed Lagrangians of configuration spaces of disks. Finally, we give a formula for using a generalized notion of determinant, that provides one for the ADO family. It generalizes that for the Alexander invariant.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3