Dynamic asymptotic dimension and Matui's HK conjecture

Author:

Bönicke Christian1,Dell'Aiera Clément2,Gabe James3,Willett Rufus4

Affiliation:

1. School of Mathematics and Statistics University of Glasgow University Gardens Glasgow UK

2. ENS Lyon UMPA Department of Mathematics Lyon Cedex France

3. Department of Mathematics and Computer Science University of Southern Denmark Odense M Denmark

4. Department of Mathematics University of Hawai‘i at Mānoa Honolulu Hawaii USA

Abstract

AbstractWe prove that the homology groups of a principal ample groupoid vanish in dimensions greater than the dynamic asymptotic dimension of the groupoid (as a side‐effect of our methods, we also give a new model of groupoid homology in terms of the Tor groups of homological algebra, which might be of independent interest). As a consequence, the K‐theory of the ‐algebras associated with groupoids of finite dynamic asymptotic dimension can be computed from the homology of the underlying groupoid. In particular, principal ample groupoids with dynamic asymptotic dimension at most two and finitely generated second homology satisfy Matui's HK‐conjecture.We also construct explicit maps from the groupoid homology groups to the K‐theory groups of their ‐algebras in degrees zero and one, and investigate their properties.

Funder

Alexander von Humboldt-Stiftung

Carlsbergfondet

Australian Research Council

National Science Foundation

Publisher

Wiley

Subject

General Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Functors between Kasparov categories from étale groupoid correspondences;Journal of Functional Analysis;2024-12

2. RELATIVE K-THEORY FOR C∗-ALGEBRAS;Rocky Mountain Journal of Mathematics;2024-08-01

3. Homology and K-theory of dynamical systems IV. Further structural results on groupoid homology;Ergodic Theory and Dynamical Systems;2024-05-15

4. On the dynamic asymptotic dimension of étale groupoids;Mathematische Zeitschrift;2024-04-26

5. A CATEGORICAL APPROACH TO THE BAUM–CONNES CONJECTURE FOR ÉTALE GROUPOIDS;Journal of the Institute of Mathematics of Jussieu;2024-01-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3