The skew Brownian permuton: A new universality class for random constrained permutations

Author:

Borga Jacopo1

Affiliation:

1. Department of Mathematics Stanford University Stanford California USA

Abstract

AbstractWe construct a new family of random permutons, called skew Brownian permuton, which describes the limits of several models of random constrained permutations. This family is parameterized by two real parameters. For a specific choice of the parameters, the skew Brownian permuton coincides with the Baxter permuton, that is, the permuton limit of Baxter permutations. We prove that for another specific choice of the parameters, the skew Brownian permuton coincides with the biased Brownian separable permuton, a one‐parameter family of permutons previously studied in the literature as the limit of uniform permutations in substitution‐closed classes. This brings two different limiting objects under the same roof, identifying a new larger universality class. The skew Brownian permuton is constructed in terms of flows of solutions of certain stochastic differential equations (SDEs) driven by two‐dimensional correlated Brownian excursions in the nonnegative quadrant. We call these SDEs skew perturbed Tanaka equations because they are a mixture of the perturbed Tanaka equations and the equations encoding skew Brownian motions. We prove existence and uniqueness of (strong) solutions for these new SDEs. In addition, we show that some natural permutons arising from Liouville quantum gravity (LQG) spheres decorated with two Schramm–Loewner evolution (SLE) curves are skew Brownian permutons and such permutons cover almost the whole range of possible parameters. Some connections between constrained permutations and decorated planar maps have been investigated in the literature at the discrete level; this paper establishes this connection directly at the continuum level. Proving the latter result, we also give an SDE interpretation of some quantities related to SLE‐decorated LQG spheres.

Publisher

Wiley

Subject

General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3