The Loewner–Kufarev energy and foliations by Weil–Petersson quasicircles

Author:

Viklund Fredrik1,Wang Yilin2

Affiliation:

1. KTH Royal Institute of Technology Stockholm Sweden

2. Institut des Hautes Études Scientifiques Bures‐sur‐Yvette France

Abstract

AbstractWe study foliations by chord–arc Jordan curves of the twice punctured Riemann sphere using the Loewner–Kufarev equation. We associate to such a foliation a function on the plane that describes the “local winding” along each leaf. Our main theorem is that this function has finite Dirichlet energy if and only if the Loewner driving measure has finite Loewner–Kufarev energy, defined by whenever is of the form , and set to otherwise. Moreover, if either of these two energies is finite, they are equal up to a constant factor, and in this case, the foliation leaves are Weil–Petersson quasicircles. This duality between energies has several consequences. The first is that the Loewner–Kufarev energy is reversible, that is, invariant under inversion and time reversal of the foliation. Furthermore, the Loewner energy of a Jordan curve can be expressed using the minimal Loewner–Kufarev energy of those measures that generate the curve as a leaf. This provides a new and quantitative characterization of Weil–Petersson quasicircles. Finally, we consider conformal distortion of the foliation and show that the Loewner–Kufarev energy satisfies an exact transformation law involving the Schwarzian derivative. The proof of our main theorem uses an isometry between the Dirichlet energy space on the unit disc and that we construct using Hadamard's variational formula expressed by means of the Loewner–Kufarev equation. Our results are related to ‐parameter duality and large deviations of Schramm–Loewner evolutions coupled with Gaussian random fields.

Funder

Knut och Alice Wallenbergs Stiftelse

Vetenskapsrådet

National Science Foundation

Publisher

Wiley

Reference70 articles.

1. Pure and Applied Mathematics (Amsterdam);Adams R. A.,2003

2. Complete minimal hypersurfaces in hyperbolicn-manifolds

3. M.Ang Liouville conformal field theory and the quantum zipper Preprint arxiv:2301.13200 2023.

4. M.Ang N.Holden andX.Sun Conformal welding of quantum disks arXiv preprint:2009.08389 2020.

5. Large deviations of radial SLE∞$_\infty$;Ang M.;Electron. J. Probab.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3