Affiliation:
1. Max Planck Institute for Mathematics Bonn Germany
2. Centre de Recherches Mathématiques Université de Montréal Montréal Québec Canada
3. Mathematical Institute University of Oxford Oxford UK
Abstract
AbstractWe study for bounded multiplicative functions sums of the form
establishing that their variance over residue classes is small as soon as , for almost all moduli , with a nearly power‐saving exceptional set of . This improves and generalizes previous results of Hooley on Barban–Davenport–Halberstam type theorems for such , and moreover our exceptional set is essentially optimal unless one is able to make progress on certain well‐known conjectures. We are nevertheless able to prove stronger bounds for the number of the exceptional moduli in the cases where is restricted to be either smooth or prime, and conditionally on GRH we show that our variance estimate is valid for every . These results are special cases of a “hybrid result” that we establish that works for sums of over almost all short intervals and arithmetic progressions simultaneously, thus generalizing the Matomäki–Radziwiłł theorem on multiplicative functions in short intervals. We also consider the maximal deviation of over all residue classes in the square root range , and show that it is small for “smooth‐supported” , again apart from a nearly power‐saving set of exceptional , thus providing a smaller exceptional set than what follows from Bombieri–Vinogradov type theorems. As an application of our methods, we consider Linnik‐type problems for products of exactly three primes, and in particular prove a ternary approximation to a conjecture of Erdős on representing every element of the multiplicative group as the product of two primes less than .
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献