Hajnal–Máté graphs, Cohen reals, and disjoint‐type guessing

Author:

Lambie‐Hanson Chris1ORCID,Uhrik Dávid12

Affiliation:

1. Institute of Mathematics of the Czech Academy of Sciences Prague Czech Republic

2. Department of Algebra Charles University, Faculty of Mathematics and Physics Praha Czech Republic

Abstract

AbstractA Hajnal–Máté graph is an uncountably chromatic graph on satisfying a certain natural sparseness condition. We investigate Hajnal–Máté graphs and generalizations thereof, focusing on the existence of Hajnal–Máté graphs in models resulting from adding a single Cohen real. In particular, answering a question of Dániel Soukup, we show that such models necessarily contain triangle‐free Hajnal–Máté graphs. In the process, we isolate a weakening of club guessing called disjoint‐type guessing that we feel is of interest in its own right. We show that disjoint‐type guessing is independent of and, if disjoint‐type guessing holds in the ground model, then the forcing extension by a single Cohen real contains Hajnal–Máté graphs such that the chromatic numbers of finite subgraphs of grow arbitrarily slowly.

Funder

Grantová Agentura České Republiky

Akademie Věd České Republiky

Publisher

Wiley

Reference20 articles.

1. A colour problem for infinite graphs and a problem in the theory of relations;Bruijn N. G.;Indag. Math.,1951

2. On the consistency strength of MM(ω1)$\mathsf {MM}(\omega _1)$;Dobrinen N.;Proc. Amer. Math. Soc.,2023

3. On chromatic number of graphs and set-systems

4. On Almost Bipartite Large Chromatic Graphs

5. What must and what need not be contained in a graph of uncountable chromatic number?

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3