Largest hyperbolic action of 3‐manifold groups

Author:

Abbott Carolyn1,Nguyen Hoang Thanh2,Rasmussen Alexander J.3

Affiliation:

1. Department of Mathematics Brandeis University Waltham Massachusetts USA

2. Department of Mathematics FPT University DaNang Vietnam

3. Department of Mathematics Stanford University Stanford California USA

Abstract

AbstractThe set of equivalence classes of cobounded actions of a group on different hyperbolic metric spaces carries a natural partial order. Following Abbott–Balasubramanya–Osin, the group is ‐accessible if the resulting poset has a largest element. In this paper, we prove that every nongeometric 3‐manifold has a finite cover with ‐inaccessible fundamental group and give conditions under which the fundamental group of the original manifold is ‐inaccessible. We also prove that every Croke–Kleiner admissible group (a class of graphs of groups that generalizes fundamental groups of three‐dimensional graph manifolds) has a finite index subgroup that is ‐inaccessible.

Funder

National Science Foundation

Publisher

Wiley

Reference31 articles.

1. Hyperbolic structures on groups;Abbott C.;Algebra. Geom. Topol,2019

2. Largest acylindrical actions and stability in hierarchically hyperbolic groups;Abbott C.;with an appendix by Daniel Berlyne and Jacob Russell, Trans. Amer. Math. Soc. Ser. B,2021

3. Extending group actions on metric spaces;Abbott C.;J. Topol. Anal.,2020

4. Largest hyperbolic actions and quasi‐parabolic actions in groups;Abbott C.;J. Topol. Anal.

5. Actions of solvable Baumslag‐Solitar groups on hyperbolic metric spaces;Abbott C.;Algebra. Geom. Topol.,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3