Interval groups related to finite Coxeter groups Part II

Author:

Baumeister Barbara1,Holt Derek F.2,Neaime Georges1ORCID,Rees Sarah3

Affiliation:

1. Fakultät für Mathematik Universität Bielefeld Bielefeld Germany

2. Mathematics Institute University of Warwick Coventry UK

3. School of Mathematics, Statistics and Physics University of Newcastle Newcastle UK

Abstract

AbstractWe provide a complete description of the presentations of the interval groups related to quasi‐Coxeter elements in finite Coxeter groups. In the simply laced cases, we show that each interval group is the quotient of the Artin group associated with the corresponding Carter diagram by the normal closure of a set of twisted cycle commutators, one for each 4‐cycle of the diagram. Our techniques also reprove an analogous result for the Artin groups of finite Coxeter groups, which are interval groups corresponding to Coxeter elements. We also analyse the situation in the non‐simply laced cases, where a new Garside structure is discovered. Furthermore, we obtain a complete classification of whether the interval group we consider is isomorphic or not to the related Artin group. Indeed, using methods of Tits, we prove that the interval groups of proper quasi‐Coxeter elements are not isomorphic to the Artin groups of the same type, in the case of when is even or in any of the exceptional cases. In Baumeister et al. (J. Algebra 629 (2023), 399–423), we show using different methods that this result holds for type for all .

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3