Author:
Boston Nigel,Wood Melanie Matchett
Abstract
Boston, Bush and Hajir have developed heuristics, extending the Cohen–Lenstra heuristics, that conjecture the distribution of the Galois groups of the maximal unramified pro-$p$extensions of imaginary quadratic number fields for$p$an odd prime. In this paper, we find the moments of their proposed distribution, and further prove there is a unique distribution with those moments. Further, we show that in the function field analog, for imaginary quadratic extensions of$\mathbb{F}_{q}(t)$, the Galois groups of the maximal unramified pro-$p$extensions, as$q\rightarrow \infty$, have the moments predicted by the Boston, Bush and Hajir heuristics. In fact, we determine the moments of the Galois groups of the maximal unramified pro-odd extensions of imaginary quadratic function fields, leading to a conjecture on Galois groups of the maximal unramified pro-odd extensions of imaginary quadratic number fields.
Subject
Algebra and Number Theory
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献