Abstract
We prove a rigid analytic analogue of the Artin–Grothendieck vanishing theorem. Precisely, we prove (under mild hypotheses) that the geometric étale cohomology of any Zariski-constructible sheaf on any affinoid rigid space $X$ vanishes in all degrees above the dimension of $X$. Along the way, we show that branched covers of normal rigid spaces can often be extended across closed analytic subsets, in analogy with a classical result for complex analytic spaces. We also prove some new comparison theorems relating the étale cohomology of schemes and rigid analytic varieties, and give some applications of them. In particular, we prove a structure theorem for Zariski-constructible sheaves on characteristic-zero affinoid spaces.
Subject
Algebra and Number Theory
Reference24 articles.
1. Irreducible components of rigid spaces
2. The Lefschetz Theorem on Hyperplane Sections
3. Solutions d'équations à coefficients dans un anneau hensélien
4. [Han17] D. Hansen , A primer on reflexive sheaves, Appendix to the preprint ‘On the Kottwitz conjecture for local Shimura varieties’ by Tasho Kaletha and Jared Weinstein. Preprint (2017),arXiv:1709.06651 [math.NT].
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. LOCAL SECTIONS OF ARITHMETIC FUNDAMENTAL GROUPS OF p-ADIC CURVES;Nagoya Mathematical Journal;2023-12-20
2. A non-Archimedean analogue of Campana's notion of specialness;Algebraic Geometry;2023-05-01
3. Geometric arcs and fundamental groups of rigid spaces;Journal für die reine und angewandte Mathematik (Crelles Journal);2023-04-20
4. Logarithmic Adic Spaces: Some Foundational Results;p-adic Hodge Theory, Singular Varieties, and Non-Abelian Aspects;2022-11-08
5. Tame and strongly étale cohomology of curves;Israel Journal of Mathematics;2022-10-04