Motivic and real étale stable homotopy theory

Author:

Bachmann Tom

Abstract

Let$S$be a Noetherian scheme of finite dimension and denote by$\unicode[STIX]{x1D70C}\in [\unicode[STIX]{x1D7D9},\mathbb{G}_{m}]_{\mathbf{SH}(S)}$the (additive inverse of the) morphism corresponding to$-1\in {\mathcal{O}}^{\times }(S)$. Here$\mathbf{SH}(S)$denotes the motivic stable homotopy category. We show that the category obtained by inverting$\unicode[STIX]{x1D70C}$in$\mathbf{SH}(S)$is canonically equivalent to the (simplicial) local stable homotopy category of the site$S_{\text{r}\acute{\text{e}}\text{t}}$, by which we mean thesmallreal étale site of$S$, comprised of étale schemes over$S$with the real étale topology. One immediate application is that$\mathbf{SH}(\mathbb{R})[\unicode[STIX]{x1D70C}^{-1}]$is equivalent to the classical stable homotopy category. In particular this computes all the stable homotopy sheaves of the$\unicode[STIX]{x1D70C}$-local sphere (over$\mathbb{R}$). As further applications we show that$D_{\mathbb{A}^{1}}(k,\mathbb{Z}[1/2])^{-}\simeq \mathbf{DM}_{W}(k)[1/2]$(improving a result of Ananyevskiy–Levine–Panin), reprove Röndigs’ result that$\text{}\underline{\unicode[STIX]{x1D70B}}_{i}(\unicode[STIX]{x1D7D9}[1/\unicode[STIX]{x1D702},1/2])=0$for$i=1,2$and establish some new rigidity results.

Publisher

Wiley

Subject

Algebra and Number Theory

Reference44 articles.

1. Rigidity for Henselian local rings and $$\mathbb{A}^1$$ -representable theories

2. Parametrized Homotopy Theory

3. 𝐾-theory of Henselian local rings and Henselian pairs

4. [Hoy17] M. Hoyois , Cdh descent in equivariant homotopy K-theory, Preprint (2017),arXiv:1604.06410v3.

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ℝ-motivic v1-periodic homotopy;Pacific Journal of Mathematics;2024-07-22

2. Motivic Pontryagin classes and hyperbolic orientations;Journal of Topology;2023-11-21

3. ODD RANK VECTOR BUNDLES IN ETA-PERIODIC MOTIVIC HOMOTOPY THEORY;Journal of the Institute of Mathematics of Jussieu;2023-08-23

4. Motivic stable homotopy theory is strictly commutative at the characteristic;Advances in Mathematics;2022-12

5. Three real Artin-Tate motives;Advances in Mathematics;2022-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3