Author:
Hughes C. P.,Nikeghbali A.
Abstract
AbstractIn this paper we deduce a universal result about the asymptotic distribution of roots of random polynomials, which can be seen as a complement to an old and famous result of Erdős and Turan. More precisely, given a sequence of random polynomials, we show that, under some very general conditions, the roots tend to cluster near the unit circle, and their angles are uniformly distributed. The method we use is deterministic: in particular, we do not assume independence or equidistribution of the coefficients of the polynomial.
Subject
Algebra and Number Theory
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献