Produit eulérien motivique et courbes rationnelles sur les variétés toriques

Author:

Bourqui David

Abstract

AbstractWe study the asymptotical behaviour of the moduli space of morphisms of given anticanonical degree from a rational curve to a split toric variety, when the degree goes to infinity. We obtain in this case a geometric analogue of Manin’s conjecture about rational points of bounded height on varieties defined over a global field. The study is led through a generating series whose coefficients lie in a Grothendieck ring of motives, the motivic height zeta function. In order to establish convergence properties of this function, we use a notion of motivic Euler product. It relies on a construction of Denef and Loeser which associates a virtual motive to a first order logic ring formula.

Publisher

Wiley

Subject

Algebra and Number Theory

Reference34 articles.

1. Tamagawa measures on universal torsors and points of bounded height on Fano varieties;Salberger;Astérisque,1998

2. Points de hauteur bornée, topologie adélique et mesures de Tamagawa

3. [30] Peyre E. , Points de hauteur bornée sur les variétés de drapeaux en caractéristique finie, Preprint (2003), arXiv:math/0303067v1.

4. [25] Madore D. A. , Very free R-equivalence on toric models, Preprint (2005), http://dma.ens.fr/∼madore/torwhole.pdf.

5. Rationality criteria for motivic zeta functions

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Classifying sections of del Pezzo fibrations, I;Journal of the European Mathematical Society;2023-06-12

2. Motivic Euler Products and Motivic Height Zeta Functions;Memoirs of the American Mathematical Society;2023-02

3. Classifying sections of del Pezzo fibrations, II;Geometry & Topology;2022-12-13

4. Zeta statistics and Hadamard functions;Advances in Mathematics;2022-10

5. Geometric Batyrev–Manin–Peyre for equivariant compactifications of additive groups;Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry;2022-08-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3