On the topology of Diophantine approximation spectra

Author:

Roy Damien

Abstract

Fix an integer$n\geqslant 2$. To each non-zero point$\mathbf{u}$in$\mathbb{R}^{n}$, one attaches several numbers calledexponents of Diophantine approximation. However, as Khintchine first observed, these numbers are not independent of each other. This raises the problem of describing the set of all possible values that a given family of exponents can take by varying the point $\mathbf{u}$. To avoid trivialities, one restricts to points $\mathbf{u}$whose coordinates are linearly independent over $\mathbb{Q}$. The resulting set of values is called thespectrum of these exponents. We show that, in an appropriate setting, any such spectrum is a compact connected set. In the case$n=3$, we prove moreover that it is a semi-algebraic set closed under component-wise minimum. For$n=3$, we also obtain a description of the spectrum of the exponents$(\text{}\underline{\unicode[STIX]{x1D711}}_{1},\text{}\underline{\unicode[STIX]{x1D711}}_{2},\text{}\underline{\unicode[STIX]{x1D711}}_{3},\overline{\unicode[STIX]{x1D711}}_{1},\overline{\unicode[STIX]{x1D711}}_{2},\overline{\unicode[STIX]{x1D711}}_{3})$recently introduced by Schmidt and Summerer.

Publisher

Wiley

Subject

Algebra and Number Theory

Reference23 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimality of two inequalities for exponents of Diophantine approximation;Journal of Number Theory;2023-03

2. Diophantine approximation with constraints;Acta Arithmetica;2023

3. On geometry of numbers and uniform rational approximation to the Veronese curve;Periodica Mathematica Hungarica;2021-06-11

4. A graph arising in the Geometry of Numbers;Journal de Théorie des Nombres de Bordeaux;2021-05-21

5. On a question of Schmidt and Summerer concerning 3-systems;Communications in Mathematics;2020-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3