Abstract
Let $F$ be a non-archimedean local field of residual characteristic $p \neq 2$. Let $G$ be a (connected) reductive group over $F$ that splits over a tamely ramified field extension of $F$. We revisit Yu's construction of smooth complex representations of $G(F)$ from a slightly different perspective and provide a proof that the resulting representations are supercuspidal. We also provide a counterexample to Proposition 14.1 and Theorem 14.2 in Yu [Construction of tame supercuspidal representations, J. Amer. Math. Soc. 14 (2001), 579–622], whose proofs relied on a typo in a reference.
Subject
Algebra and Number Theory
Reference8 articles.
1. Weil representations associated to finite fields;Gérardin;J. Algebra,1977
2. Jacquet functors and unrefined minimal $K$-types;Moy;Comment. Math. Helv,1996
3. Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d'une donnée radicielle valuée;Bruhat;Publ. Math. Inst. Hautes Études Sci,1984
4. Groupes réductifs sur un corps local;Bruhat;Publ. Math. Inst. Hautes Études Sci,1972
5. Construction of tame supercuspidal representations;Yu;J. Amer. Math. Soc,2001
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献