The Chern–Ricci flow on complex surfaces

Author:

Tosatti Valentino,Weinkove Ben

Abstract

AbstractThe Chern–Ricci flow is an evolution equation of Hermitian metrics by their Chern–Ricci form, first introduced by Gill. Building on our previous work, we investigate this flow on complex surfaces. We establish new estimates in the case of finite time non-collapsing, analogous to some known results for the Kähler–Ricci flow. This provides evidence that the Chern–Ricci flow carries out blow-downs of exceptional curves on non-minimal surfaces. We also describe explicit solutions to the Chern–Ricci flow for various non-Kähler surfaces. On Hopf surfaces and Inoue surfaces these solutions, appropriately normalized, collapse to a circle in the sense of Gromov–Hausdorff. For non-Kähler properly elliptic surfaces, our explicit solutions collapse to a Riemann surface. Finally, we define a Mabuchi energy functional for complex surfaces with vanishing first Bott–Chern class and show that it decreases along the Chern–Ricci flow.

Publisher

Wiley

Subject

Algebra and Number Theory

Reference63 articles.

1. Some examples of locally conformal Kähler manifolds;Tricerri;Rend. Semin. Mat. Univ. Politec. Torino,1982

2. [TW12] V. Tosatti and B. Weinkove , On the evolution of a Hermitian metric by its Chern–Ricci form, Preprint (2012), arXiv:1201.0312.

3. On the Kähler-Ricci Flow on Projective Manifolds of General Type

4. The pseudo-effective cone of a non-Kählerian surface and applications

5. Donaldson theory on non-Kählerian surfaces and class VII surfaces with b2=1

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The continuity equation for Hermitian metrics: Calabi estimates, Chern scalar curvature, and Oeljeklaus–Toma manifolds;Bulletin of the London Mathematical Society;2023-12-15

2. Leafwise flat forms on Inoue-Bombieri surfaces;Journal of Functional Analysis;2023-09

3. The Continuity Equation on Hopf and Inoue Surfaces;International Mathematics Research Notices;2023-03-31

4. Vaisman manifolds and transversally Kähler–Einstein metrics;Annali di Matematica Pura ed Applicata (1923 -);2023-01-16

5. Levi-Civita Ricci-Flat Metrics on Non-Kähler Calabi-Yau Manifolds;The Journal of Geometric Analysis;2023-01-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3