Abstract
AbstractThis is a report on recent work of Chałupnik and Touzé. We explain the Koszul duality for the category of strict polynomial functors and make explicit the underlying monoidal structure which seems to be of independent interest. Then we connect this to Ringel duality for Schur algebras and describe Serre duality for strict polynomial functors.
Subject
Algebra and Number Theory
Reference35 articles.
1. Polynomial Representations of GLn
2. A universal property of the convolution monoidal structure
3. [Tou10] A. Touzé , Bar complexes and extensions of classical exponential functors, Preprint (2010), math.RT/1012.2724v2.
4. Resolutions of unbounded complexes;Spaltenstein;Compositio Math.,1988
Cited by
55 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Finitude homologique des foncteurs sur une catégorie additive et applications;Transactions of the American Mathematical Society;2022-10-24
2. On the Serre Functor in the Category of Strict Polynomial Functors;Transformation Groups;2022-10-21
3. Index;Homological Theory of Representations;2021-11-18
4. Notation;Homological Theory of Representations;2021-11-18
5. References;Homological Theory of Representations;2021-11-18