Eigenvalues of Hermitian matrices and equivariant cohomology of Grassmannians

Author:

Anderson David,Richmond Edward,Yong Alexander

Abstract

AbstractThe saturation theorem of Knutson and Tao concerns the nonvanishing of Littlewood–Richardson coefficients. In combination with work of Klyachko, it implies Horn’s conjecture about eigenvalues of sums of Hermitian matrices. This eigenvalue problem has a generalization to majorized sums of Hermitian matrices, due to S. Friedland. We further illustrate the common features between these two eigenvalue problems and their connection to Schubert calculus of Grassmannians. Our main result gives a Schubert calculus interpretation of Friedland’s problem, via equivariant cohomology of Grassmannians. In particular, we prove a saturation theorem for this setting. Our arguments employ the aforementioned work together with recent work of H. Thomas and A. Yong.

Publisher

Wiley

Subject

Algebra and Number Theory

Reference26 articles.

1. The direct sum map on Grassmannians and jeu de taquin for increasing tableaux;Thomas;Int. Math. Res. Notices,2011

2. [TY12] H. Thomas and A. Yong , Equivariant Schubert calculus and jeu de taquin, Ann. Inst. Fourier (Grenoble), to appear; arXiv:1207.3209.

3. Eigenvalues, invariant factors, highest weights, and Schubert calculus

4. Eigencone, saturation and Horn problems for symplectic and odd orthogonal groups

5. [Ful07] W. Fulton , Equivariant cohomology in algebraic geometry, Lectures at Columbia University, Notes by D. Anderson (2007), http://www.math.washington.edu/~dandersn/eilenberg.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Integrable systems and crystals for edge labeled tableaux;Journal of Algebra;2024-04

2. What is a combinatorial interpretation?;Proceedings of Symposia in Pure Mathematics;2024

3. Extremal Rays of the Equivariant Littlewood-Richardson Cone;The Electronic Journal of Combinatorics;2022-07-01

4. Newell-Littlewood numbers;Transactions of the American Mathematical Society;2021-06-07

5. Vanishing of Littlewood–Richardson polynomials is in P;computational complexity;2019-04-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3