Cluster structures for 2-Calabi–Yau categories and unipotent groups

Author:

Buan A. B.,Iyama O.,Reiten I.,Scott J.

Abstract

AbstractWe investigate cluster-tilting objects (and subcategories) in triangulated 2-Calabi–Yau and related categories. In particular, we construct a new class of such categories related to preprojective algebras of non-Dynkin quivers associated with elements in the Coxeter group. This class of 2-Calabi–Yau categories contains, as special cases, the cluster categories and the stable categories of preprojective algebras of Dynkin graphs. For these 2-Calabi–Yau categories, we construct cluster-tilting objects associated with each reduced expression. The associated quiver is described in terms of the reduced expression. Motivated by the theory of cluster algebras, we formulate the notions of (weak) cluster structure and substructure, and give several illustrations of these concepts. We discuss connections with cluster algebras and subcluster algebras related to unipotent groups, in both the Dynkin and non-Dynkin cases.

Publisher

Wiley

Subject

Algebra and Number Theory

Reference76 articles.

1. Derived Categories and Their Uses

2. Torsion Theories and Tilting Modules

3. Total positivity in Schubert varieties

4. Cohen-Macaulay Modules over Cohen-Macaulay Rings

5. [72] Scott J. , Block-Toeplitz determinants, chess tableaux, and the type  $\hat {A_1}$  Geiss–Leclerc–Schröer φ-map, Preprint (2007), arXiv:0707.3046.

Cited by 158 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3