Zero cycles with modulus and zero cycles on singular varieties

Author:

Binda Federico,Krishna Amalendu

Abstract

Given a smooth variety$X$and an effective Cartier divisor$D\subset X$, we show that the cohomological Chow group of 0-cycles on the double of$X$along$D$has a canonical decomposition in terms of the Chow group of 0-cycles$\text{CH}_{0}(X)$and the Chow group of 0-cycles with modulus$\text{CH}_{0}(X|D)$on$X$. When$X$is projective, we construct an Albanese variety with modulus and show that this is the universal regular quotient of$\text{CH}_{0}(X|D)$. As a consequence of the above decomposition, we prove the Roitman torsion theorem for the 0-cycles with modulus. We show that$\text{CH}_{0}(X|D)$is torsion-free and there is an injective cycle class map$\text{CH}_{0}(X|D){\hookrightarrow}K_{0}(X,D)$if$X$is affine. For a smooth affine surface$X$, this is strengthened to show that$K_{0}(X,D)$is an extension of$\text{CH}_{1}(X|D)$by$\text{CH}_{0}(X|D)$.

Publisher

Wiley

Subject

Algebra and Number Theory

Reference51 articles.

1. The spectral sequence relating algebraic K-theory to motivic cohomology;Friedlander;Ann. Sci. Éc. Norm. Supér. (4),2002

2. Sur les crit�res d'�quivalence en g�om�trie alg�brique

3. Zero cycles and complete intersections on singular varieties;Levine;J. Reine Angew. Math.,1985

4. Chow group of 0-cycles with modulus and higher-dimensional class field theory;Kerz;Duke Math. J.,2016

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Duality theorems for curves over local fields;Transactions of the American Mathematical Society, Series B;2024-07-19

2. Zero-cycles in families of rationally connected varieties;Selecta Mathematica;2024-07-09

3. Derived log Albanese sheaves;Advances in Mathematics;2023-03

4. Suslin homology via cycles with modulus and applications;Transactions of the American Mathematical Society;2022-11-09

5. Bloch’s formula for 0-cycles with modulus and higher-dimensional class field theory;Journal of Algebraic Geometry;2022-08-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3