Abstract
AbstractFor two real characters ψ,ψ′ of conductor dividing 8 define where $\chi _d = (\frac {d}{.})$ and the subscript 2 denotes the fact that the Euler factor at 2 has been removed. These double Dirichlet series can be extended to $\Bbb {C}^2$ possessing a group of functional equations isomorphic to D12. The convexity bound for Z(s,w;ψ,ψ′) is |sw(s+w)|1/4+ε for ℜs=ℜw=1/2. It is proved that Moreover, the following mean square Lindelöf-type bound holds: for any Y1,Y2≥1.
Subject
Algebra and Number Theory
Reference13 articles.
1. On the central value of symmetric square L-functions
2. Analytic Number Theory
3. A mean value estimate for real character sums;Heath-Brown;Acta Arith.,1995
4. [10] Li X. , Bounds for GL(3)×GL(2) L -functions and GL(3) L -functions, Ann. of Math (2), to appear.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献