Abstract
AbstractLet C be a locally planar curve. Its versal deformation admits a stratification by the genera of the fibres. The strata are singular; we show that their multiplicities at the central point are determined by the Euler numbers of the Hilbert schemes of points on C. These Euler numbers have made two prior appearances. First, in certain simple cases, they control the contribution of C to the Pandharipande–Thomas curve counting invariants of three-folds. In this context, our result identifies the strata multiplicities as the local contributions to the Gopakumar–Vafa BPS invariants. Second, when C is smooth away from a unique singular point, a conjecture of Oblomkov and the present author identifies the Euler numbers of the Hilbert schemes with the ‘U(∞)’ invariant of the link of the singularity. We make contact with combinatorial ideas of Jaeger, and suggest an approach to the conjecture.
Subject
Algebra and Number Theory
Reference33 articles.
1. Classification of isolated algebraic singularities by their Alexander polynomials
2. Curve counting via stable pairs in the derived category
3. [OS10] Oblomkov A. and Shende V. , The Hilbert scheme of a plane curve singularity, and the HOMFLY polynomial of its link, Duke Math. J., to appear, arXiv:1003.1568v1 [math.AG].
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献