Author:
Freitas Nuno,Siksek Samir
Abstract
Let $K$ be a totally real field. By the asymptotic Fermat’s Last Theorem over$K$ we mean the statement that there is a constant $B_{K}$ such that for any prime exponent $p>B_{K}$, the only solutions to the Fermat equation $$\begin{eqnarray}a^{p}+b^{p}+c^{p}=0,\quad a,b,c\in K\end{eqnarray}$$ are the trivial ones satisfying $abc=0$. With the help of modularity, level lowering and image-of-inertia comparisons, we give an algorithmically testable criterion which, if satisfied by $K$, implies the asymptotic Fermat’s Last Theorem over $K$. Using techniques from analytic number theory, we show that our criterion is satisfied by $K=\mathbb{Q}(\sqrt{d})$ for a subset of $d\geqslant 2$ having density ${\textstyle \frac{5}{6}}$ among the squarefree positive integers. We can improve this density to $1$ if we assume a standard ‘Eichler–Shimura’ conjecture.
Subject
Algebra and Number Theory
Reference49 articles.
1. [AS14] S. Anni and S. Siksek , On Serre’s uniformity conjecture for semistable elliptic curves over totally real fields, Preprint (2014), arXiv:1408.1279.
2. [Fuj06] K. Fujiwara , Level optimisation in the totally real case, Preprint (2006), arXiv:math/0602586.
3. Parametrization of low-degree points on a Fermat curve
4. Sur les représentations modulaires de degré 2 de Gal(Q¯/Q)
5. On the levels of mod ℓ Hilbert modular forms;Rajaei;J. Reine Angew. Math.,2001
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献